2023年10月30日上午,第二十六期“高研交叉论坛”将在上海高研院召开,本次论坛由光源生命科学研究部衍射组和上海光源高温结构材料联合实验室(筹)承办,论坛以“同步辐射与航空发动机材料研究”为主题,法国巴黎萨克雷大学嵇宁教授、上海交通大学赵晓峰教授、北京航空航天大学宋文佳教授担任主讲嘉宾,诚邀高研院院内外科研人员及研究生参加。
论坛时间:2023年10月30日,10:00-12:00
论坛地点:上海浦东新区海科路99号二楼报告厅
预参加论坛的老师和同学可扫码进行报名,并准时参加论坛。
感谢您对高研交叉论坛的支持。
主讲嘉宾及报告:
1.嵇宁,法国巴黎萨克雷大学,教授
法国国立高等工程技术学院获博士学位,先后在国立高工和巴黎南11大(现萨克雷大学)担任教职,2016年受聘特级教授,2019年起任材料机械和能源系主任。长期从事晶体材料微观结构和力学性能关系、工程材料失效与残余应力分析、衍射(X射线/中子/同步辐射)、以及应力分析技术的开发与应用工作,主持和参加多项欧盟、法国科研部和法国国家科学研究中心(CNRS)科研项目。在Acta Materialia、Ceramics Int.、Mechanics of Materials等发表文章350多篇,被引用超过6900次,H-index 45。法国标准协会无损探测委员会会员、中国机械工程协会材料分会残余应力专业委员会副主任、中国机械工程学会失效分析分会喷丸技术专业委员会副主任、中国航空学会驻欧洲首席代表。
报告题目:Internal stress analysis by synchrotron diffraction method
报告摘要:Dues to the materials fabrication and mechanical forming process, the internal stresses can be generated inevitably in mechanical components. The existence of those internal stress can affect largely the use properties of the materials and the mechanical components. So, it is necessary to dispose the technical solutions to identify and to quantify the internal stresses and to study their influences on materials behavior and on their durability. 3 orders of internal stresses can be defined and identified according to the observation scale in relationship with microstructure evolution and materials processing. Some analysis examples will be presented to show the relationship between the microstructure feature and the associated internal stress evolution of crystallin materials studied by synchrotron diffraction.
2.赵晓峰,上海交通大学,教授
英国曼彻斯特大学获博士学位、现任上海交通大学材料学院教授,入选国家高层次人才计划、上海市东方学者特聘教授,获英国皇家学会Armourers & Brasiers奖。主要研究方向为航空发动机及地面燃气轮机热障涂层、航天飞行器热防护涂层,长期与英国罗罗、中航发、西门子等合作,超4000台罗罗Trent系列发动机应用。轻质—低热导—抗热振防热涂层应用于我国第一代固液运载火箭。在Acat Mater、美国陶瓷学会会刊、Corrosion Science等发表论文190余篇、引用3800余次,参编英文专著5部、参与制定国家标准2项,授权发明专利40余项(美国专利2项),国内外会议邀请报告50余次,担任《Coatings》等三个期刊编委。
报告题目:Strategies for Improving the Lifetime of Air-plasma Sprayed Thermal Barrier Coatings
报告摘要:Air plasma sprayed (APS) thermal barrier coatings (TBCs) with typical lamellar structures are extensively employed in the hot sections of gas-turbine engines to elevate operational temperatures and improve engine efficiencies. However, these TBCs undergo degradation, leading to premature failure during service. Extending the lifespan of TBCs necessitates a comprehensive understanding of the degradation behavior and failure mechanisms involved. This study addresses the failure mechanisms associated with residual stress, growth of the thermally grown oxides, sintering, interfacial degradation, and calcium-magnesium-alumino-silicate (CMAS) attack. Moreover, recent advancements in strategies to mitigate the adverse effects of these life-limiting mechanisms will be reviewed, which include designing of interfacial and coating microstructure, and composition and processing modifications. Lastly, future directions and challenges for advancing APS TBCs will be presented.
3.宋文佳,北京航空航天大学,教授
浙江省天目山实验室副主任,慕尼黑大学/厦门大学客座教授。2021 年中组部“海外优青”基金获得者,2015年德国科技创新领军人才。德国“洪堡基金”和“自由科学精神”人才项目资助,2012-2021年在慕尼黑大学担任助理教授、课题组长、博士生导师。2021年起作为项目负责人先后主持科技委重大项目、航空发动机及燃气轮机基础科学中心重大项目、德国国家重大项目等。长期从事海基、陆基与航空发动机CMAS高温腐蚀与防护方法研究,极端服役环境下高温防护涂层设计、制备、评价与应用,人工智能框架下多尺度材料与流体耦合模拟应用研究等。
报告题目:High-temperature CMAS corrosion in advanced aero engines: interaction behavior and protective strategies
报告摘要:Safe air travel activity requires clean flight corridors. But in Earth's atmosphere, particles (sand, dust and volcanic ash, referred to as CMAS) are often present. In excess cases, this contamination may endanger engine performance. and can even cause catastrophic failure. Consequently, it is essential to quantitatively delineate how CMAS undergoes melting and how it impinges upon and interacts with the hot-section components. This work aims to integrate a multi-disciplinary approach, drawing inspiration from biometrics (e.g., the lotus effect) and technologies used in coal combustion, thermal spraying, high-temperature interfacial science, and laser micro-machining to fully investigate the challenges imposed by CMAS corrosive interaction with jet engines.
科技发展处
2023年10月25日